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Group delay tuning in active fiber Bragg gratings: From superluminal
to subluminal pulse reflection
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Group delay tuning of optical pulses in pumped asymmetric fiber Bragg gratings below lasing threshold is
theoretically proposed. A gain-controlled transition from superluminal to subluminal pulse reflection is ana-
Iytically investigated in uniform gratings with a 7 phase shift and in tapered gratings.
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The issue of group delay and group velocity control of
electromagnetic pulses, at either microwave or optical fre-
quencies, has received a continuous and increasing interest
in the past recent years, and a large body of literature exists
on this subject (see, e.g., [1-3] and references therein). A
number of schemes have been studied and experimentally
demonstrated to achieve group velocity control exploiting
coherent light-matter interaction processes, such as electro-
magnetically induced transparency [4—7] and stimulated Ra-
man processes [8,9], in which the dispersion properties of an
atomic medium can be tuned by coupling suitable optical
fields between atomic levels. A few recent experiments have
nicely demonstrated group velocity control by simple power
tuning of laser coupling fields, with a transition from super-
luminal to subluminal light propagation [6,7]. The possibility
of controlling light dispersion properties using fiber-based or
waveguide-based photonic structures, such as Bragg grat-
ings, coupled-resonator optical waveguides and photonic
crystals, has attracted a great attention as well, and experi-
mental demonstrations of slow and fast light effects have
been reported by several authors. In these optical structures,
however, tuning of the dispersive properties is inherently dif-
ficult; a few studies have shown the possibility of tuning
pulse group delay exploiting pump-controlled nonlinear ef-
fects of the medium, such as phase conjugation in pumped
Kerr media [10], quadratic effects in quasi-phase-matched
nonlinear crystals [11] and stimulated Brillouin scattering in
optical fibers [12,13]. Recently, a gain-controlled enhance-
ment of group velocity in transmission has been proposed in
a distributed-feedback (DFB) semiconductor amplifier with
uniform grating by exploiting the carrier-induced refractive
index change of the semiconductor [14]. In this case, the
basic physical mechanism allowing tuning of the pulse tran-
sit time is a gain-induced frequency shift of the Bragg fre-
quency of the grating arising from the semiconductor line-
width enhancement factor related to carrier plasma. As the
gain is increased, the gain-induced refractive index change of
the semiconductor shifts the carrier wavelength of the optical
pulse from the center of the band gap, where the transit time
is fast, toward the band gap edge, where the transit time is
slowed-down. However, the basic dispersive properties of
the grating structure itself are not structurally changed by
the presence of the gain, in the sense that, e.g., at the band
gap center of the grating the group delay remains always
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superluminal and at the band gap edges always subluminal:
the main role of the gain is to sweep the pulse carrier fre-
quency with respect to the grating spectral curve via a gain-
induced refractive index change. In media where gain-
induced refractive index changes are negligible, such as in
the important class of Bragg gratings written on doped opti-
cal fibers or glass waveguides, the group delay tuning
mechanism proposed in Ref. [14] cannot be applied, and a
consistent change of pulse group delay could be attained at
the band gap edges solely for gain levels close to the lasing
threshold [15], where the system is very sensitive to noise
and to the onset of dynamical instabilities. For such reasons
the search for different and more general group delay tuning
mechanisms in active Bragg grating structures, operated far
below the lasing condition, seems of particular relevance
from both physical and applied viewpoints.

In this work a different and rather general mechanism that
allows group delay control and tuning of optical pulses in
Bragg gratings written on an active optical fiber or glass
waveguide, operated below threshold for laser oscillation, is
proposed. The main idea is the use of an asymmetric grating
profile whose dispersive properties in reflection can be struc-
turally controlled by varying the gain level of the amplifier
yet keeping the amplifier well below lasing threshold. In par-
ticular, it is shown that in a wide class of asymmetric struc-
tures a gain-controlled transition from superluminal to sub-
luminal pulse reflection can be achieved through a passage
from a local zero reflectivity condition, which marks a struc-
tural change in the dispersion curve of the grating. The dis-
persive properties of passive and lossless index-grating
Bragg structures with an asymmetric grating profile have
been previously studied in [16], and the possibility to
achieve superluminal group delays in reflection has been
proposed [16] and experimentally demonstrated [17]. On the
basis of a Hilbert-like relation between group delay and
power reflectivity spectra [Eq. (2) in Ref. [16]], it was shown
that in lossless passive gratings the group delay in reflection
of a pulse tuned near to a local minimum of the power re-
flectivity spectrum may be superluminal. In this work we
show that, when the medium is active with a uniform gain
along the grating, the group delay of the reflected pulse near
to a local minimum of the power reflectivity spectrum can be
tuned from superluminal to subluminal values by increasing
the gain level. The transition from superluminal to sublumi-
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FIG. 1. Schematic of pulse reflection in a pumped periodic
Bragg grating of length L. Pulse reflection is superluminal for
7,<0 (the case depicted in the figure), and subluminal for
7,.>2Lngy/ cy.

nal regimes occurs through a passage from a local zero re-
flectivity condition.

The starting point of our analysis is provided by a stan-
dard model of Bragg scattering in an active medium with a
longitudinal periodic modulation of the refractive index (Fig.
1), which may model, e.g., wave propagation in a Bragg
grating written on a pumped erbium-doped fiber or wave-
guide. For a periodic (i.e., not chirped) grating of length L,
the refractive index profile has the form n(z)=ng
+Ana(z)cos(2mz/ Ag) for 0<z<L, where ny is the bulk re-
fractive index, Ay is the grating period, An is the maximum
refractive index change, and a(z) is the normalized profile of
the grating modulation. If we consider the propagation of a
monochromatic field E(z, 1) at the optical frequency w close
to the Bragg frequency wp=com/(nyAg), where ¢
is the speed of light in vacuum, we may write E(z,?)
=u(z, d)exp(—iwt+ikgz) +v(z, S)exp(—iwr—ikyz) +c.c., where
kg=1/Ap is the Bragg wave number and u,v are the enve-
lopes of counterpropagating waves that, for a shallow grating
(An<ng), satisfy the following coupled-mode equations
(see, e.g., [18,19)):

duldz = (i6+ g)u+iq(2)v, (1)

dvldz=—-(i5+ g)v —ig()u. (2)

In Egs. (1) and (2), g(z)=[kgAn/(2ny)]a(z) is the real-
valued scattering potential, §=ky—kz=ny(w—wg)/c, is the
wave number detuning from the Bragg wave number kj, and
g>0 is the small-signal gain coefficient of the medium,
which is assumed to be uniform along the grating and con-
trollable by an external pump field (such as in a pumped
Er-doped fiber grating). Since we will consider propagation
of low-energy probing pulses with duration much shorter
than the relaxation time of the gain medium, gain dynamics
and saturation effects of the amplifying medium are not ac-
counted for in our analysis [20]. The general solution to Egs.
() and (2) can be written as (u(L),v(L)T
= M(8)(u(0),v(0))”, where M is the grating transfer matrix
whose elements depend on the complex detuning parameter
5= 6-ig. For a forward-propagating incident pulse (Fig. 1),
the appropriate boundary condition is v(L,8)=0 and the
spectral reflection and transmission coefficients are given by
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FIG. 2. (a) Power reflectivity, and (b) group delay in a uniform
grating with a 7 phase shift for L/L;=1.7, qoL=2 and for a
few values of the gain coefficient. Curve 1: gL=0; curve 2:
gL=0.1837; curve 3: gL=0.3551; curve 4: gL.=0.4776. In (b) the
group delay is normalized to the grating transit time Lngy/cg. In (c)
the behavior of power reflectivity (dashed curve) and normalized
group delay (solid curve) versus gain parameter gL is shown at
6=0.

1(8)=[v(0,8)/u(0, 8]y 5=0=—Ma 1/ My, and 1(3)
=[u(L,6)/u(0, )]y 5=0=1/My,, respectively. The power
transmission and reflection spectral coefficients of the grat-
ing are then T(8)=|1(d)|* and R(8)=|r(8)|>. Note that the
spectral transmission and reflection coefficients of the active
(pumped) grating are simply obtained from those of the pas-
sive lossless grating (i.e., for g=0) by replacing the real
wave number detuning & with the complex one 5= o—ig.
From inverse scattering theory, it is known that (J), f(S)
=1(8)exp(=idL), and 1/f(8) are causal functions, i.e., they

are analytic functions of 5 in the upper half plane Im(9)
>0, f(8)—1 as §— and R(8) =<1 on the real axis, i.e., for

a passive lossless grating. If 50 is the pole in the complex

plane of #(8) with the lowest imaginary part (in modulus),
self oscillation from noise of the pumped grating occurs at a

gain level g,;,=—Im(5,), for which #(&) — . In this work we
will consider gain levels below threshold for self-oscillation,
i.e., the active grating is used as an amplifier with distributed
feedback and with an injected pulse. In addition, we are in-
terested to study the dependence of time delay of the re-
flected pulse on the gain level, showing the possibility to
tune the delay from superluminal to subluminal values. For a
spectrally narrow pulse at carrier frequency w, the delay of
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the reflected pulse may be expressed by the group delay (or
phase time) 7.(w)=d¢,/dw, where ¢, is the phase of the
spectral coefficient r [16]. Note that the group delay 7, ac-
counts for time delay (7,>>0) or time advancement (7,<0)
suffered by the incident pulse after being reflected at the
input plane z=0 of the grating. Superluminal pulse reflection
occurs whenever 7,<0 [16]; in this case, the peak of the
reflected pulse appears earlier the peak of the incident pulse
has arrived at the input plane, i.e., before it has entered into
the grating (see Fig. 1). Conversely, subluminal pulse reflec-
tion occurs whenever 7,>2Lny/c, i.e., when the time delay
suffered by the pulse becomes larger than the time spent by
the pulse to travel forth and back the grating length L at the
phase velocity ¢q/ng. For g=0, it was shown in Ref. [16] that
superluminal pulse reflection (7,<<0) may occur in grating
structures with an asymmetric profile at frequencies close to
a local (nonvanishing) minimum of the spectral power re-
flectivity R, i.e., at a frequency w=w, such that R(wg) >0,
(0R/dw), =0 and (#R/ ﬁwz)w0>0. When the grating is
pumped, its dispersive properties can be conveniently tuned.
In particular, it may happen that, as the gain g is increased,
the power reflectivity R(wy) first decreases, vanishes at g
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=g, (with go<g,), and then increases. Correspondingly, at
the transition g=g, the group delay 7,(w,) changes from su-
perluminal (for g<g) to subluminal (for g>g,) values, di-
verging close to the zero reflectivity point, i.e., as g—gq
[see, e.g., Fig. 2(c) commented on below]. One can prove
this scenario for different asymmetric grating profiles. Here
we consider specifically two asymmetric profiles a(z) which
allow one to analytically calculate in a closed form the spec-

tral reflection coefficient r(): namely a uniform grating with
a 7 phase slip and a tapered grating with an exponential-like
profile.

The uniform grating with a  phase shift. This structure
closely resembles the one used in DFB lasers [18], except
that the 7 phase shift is placed at a position z=L; close
to—but not exactly coincident with—the middle of the grat-
ing [16]. We thus have a stepwise behavior for a(z), a(z)
=1 for 0<z<L, and a(z)=-1 for L, <z<L. The transfer

matrix M (J) of the structure, and hence the reflection and

transmission spectral coefficients, can be analytically calcu-
lated by standard techniques. One finds

3= i(go/N)sinh(NLy)[cosh(AL,) + i(8/\)sinh(NL,)] = i(go/N)sinh(AL,)[cosh(AL,) — i(8/\)sinh(AL,)]

3)

(go/N)? sinh(AL,)sinh(NL,) — [cosh(NL,) — i(&/\)sinh(AL,)J[cosh(AL,) — i(&/\)sinh(NL,)]

where go=kgAn/(2ny) and N=(gi-&)"2. At zero gain
(g=0), the power reflectivity shows a local minimum at
6=0, and the group delay 7, is superluminal (negative)
whenever L;>L,. A typical behavior of the power reflectiv-
ity R and normalized group delay 7,cy/(Lng) versus the nor-
malized frequency detuning SL=n¢L(w—wg)/cy, for a few
values of the gain parameter gL, is shown in Figs. 2(a) and
2(b). The threshold for self-oscillation, as obtained by calcu-
lation of the poles for Eq. (3), is attained at g,,L~0.753. The
behavior of the power reflectivity and group delay at the
Bragg frequency (6=0) versus the gain parameter gL is
shown in Fig. 2(c). Note that the group delay switches from
subluminal to superluminal values at goL =0.265, where the
power reflectivity vanishes [22].

The tapered grating. A second noteworthy example of an
asymmetric structure in which the group delay can be tuned
from superluminal to subluminal values is that of a tapered
grating profile. In order to provide analytical results, we con-
sider as an example the following special profile for the scat-
tering potential:

26a
6 cosh(26z) + y sinh(26z)

q(z) = (0<z<L), )

where a and 7y are arbitrary real-valued positive parameters,
with y>a, and 6=(*—a*)"2. A typical behavior of g(z),
shown in Fig. 3(a), is that of an exponential-like decaying

profile. This potential, for an infinitely-long grating (L— ),
corresponds to a single-pole (complex Lorentzian) spectral
reflection coefficient, and analytical solutions of the scatter-
ing problem can be obtained by the application of the
Gel’fand-Levitan-Marchenko inverse scattering method [21].
Once the solutions u# and v of the coupled-mode equations
for the infinitely-long grating are known, application of the
boundary condition v(L,8)=0 allows one to calculate ana-
Iytically the transfer matrix of the grating with finite length
L, and hence its spectral reflection coefficient, which reads
explicitly

- a(3-iy+ia)exp(-idL) - B(5- iy)exp(idL)

r(6)=— - = —,
(6+iy)(6—iy+ia)exp(-iSL)— Ba exp(idL)
(5)
where we have set
a® sinh(26L)
a= ; ; (6)
6 cosh(26L) + vy sinh(26L)
Oa

B (7)

~ Gcosh(26L) + ysinh(26L)°

A typical behavior of power reflectivity and group delay for
this kind of grating is shown in Fig. 3. Figure 3(b) shows the

behavior of power transmission |¢|* in the complex 5 plane;
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FIG. 3. (a) Profile of a tapered grating [Eq. (4)] for yL=1 and
aL=0.99. (b) Behavior of grating transmission |¢|?> in the (SL,gL)
complex plane. (c) Power reflectivity R (dashed curve) and normal-
ized group delay 7,cq/(Lng) (solid curve) versus SL for the un-
pumped tapered grating (gL=0). (d) Behavior of power reflectivity
(dashed curve) and normalized group delay (solid curve) versus
gain parameter gL for 6L=+3.23.

the existence of the two poles depicted in the figure indicates
that the threshold for self-oscillation for this grating is
reached at g,;L=1.69. For the passive lossless grating
(g=0), the power reflectivity profile R versus normalized
wave number detuning JL shows several local and nonvan-
shing minima at frequencies symmetrically detuned from the
Bragg frequencies =0, and the group delay at these fre-
quencies is superluminal [see Fig. 3(c)]. As the gain g is
increased, at these frequencies the behavior of the power
reflectivity and group delay is analogous to that previously
found for the uniform grating with a phase defect, i.e., a
transition from superluminal to subluminal pulse delays
occurs at the gain level g, where the power reflectivity
vanishes. This is shown in Fig. 3(d) for the case of the
two frequencies closest to the Bragg frequency, i.e., for
OL = +3.23; the transition occurs in this case at goL=0.53.

In order to provide realistic parameters for an experimen-
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FIG. 4. Normalized intensity profiles of reflected pulses in a
L=1-cm-long 7 phase shifted grating for gL=1.59 dB (dashed
curve), corresponding to superluminal reflection, and gL=3.08 dB
(solid curve), corresponding to subluminal reflection. The dotted
curve shows the intensity profile of the incident Gaussian pulse.
Peak power reflectivity is 3.83% and 9.8% for the superluminal and
subluminal pulses, respectively.

tal observation of pulse delay tuning from superluminal to
subluminal regimes, let us consider as an example reflection
from a unform grating with a 7 phase shift written on an
Er-doped fiber or waveguide (refractive index ny=1.46)
with a Bragg wavelength (in vacuum) Agz=1550 nm. We
assume a grating length L=1 cm, so that the characteristic
transit time of the grating is Lng/cy=48.7 ps. For L,
=5.88 mm and for a refractive index change An=1X 1074,
this grating corresponds to that shown in Fig. 2. Assuming an
incident unchirped Gaussian pulse with a pulse duration
(FWHM in intensity) 7=1 ns, the intensity profiles of the
reflected  pulses for gain levels g=0.1837 cm™!
=159 dB/cm and g=0.355 cm™'=3.08 dB/cm, corre-
sponding to curves 2 and 3 in Fig. 2(b), are shown in Fig. 4.
We note that such gain levels can be achieved in a 1-cm-long
grating using recently developed erbium-doped phosphate fi-
bers [23] or glass waveguides [24]. As a final remark, it
should also be noted that, since the pumped grating is oper-
ated at rather low amplifying levels [see Fig. 2(a)] and in the
unsaturated regime [20], amplification of the noise level
should be negligible.

In conclusion, we have theoretically shown that pulse de-
lay tuning from superluminal to subluminal values can be
achieved in active Bragg gratings with an asymmetric profile
by exploiting a structural change of the dispersive reflective
curve at a frequency close to a local minimum of power
reflectivity. An experimental demonstration of group delay
tuning based on such a different tuning mechanism could be
easily achieved using Er-doped pumped fiber gratings.
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